
A Bigjar Systems, LLC White Paper
July 2024

Discover Latent Network
Problems with Automated
Bandwidth Testing (ABT)

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 2

Executive Overview

Everyone in IT has experienced this situation: End users discover a latent network problem when
they come into the office, and IT staff must scramble to fix the problem. This white paper shows how
you can use the Network Utility Knife (from Bigjar Systems, LLC) in batch mode to automatically find
these problems before the users arrive, giving IT staff time to start repairs.

Introduction

Latent network problems are the bane of IT staff. Many network management systems can identify
if a connection is hard down. However, because routing protocols are designed to be forgiving of
packet loss, a problem that involves a noisy circuit or one that’s flooded can be difficult to detect, to
give some examples.

The latest version of the Network Utility Knife (NUK) has the ability to run jobs (batch mode) and
one type of job tests available bandwidth. With the help of some shell scripts (included in this
document and available for download) this type of job can be launched automatically with actions
taken based on the throughput measured. In this way, IT staff can receive notifications when
employees are not in the office, giving them more time to fix the problem.

In conclusion, the NUK can help you identify problems before users arrive in the office, giving you
time to effect repairs. Nothing in the market at this price point can provide this functionality.

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 3

Now the reason the enlightened prince and the wise general

conquer the enemy ... is foreknowledge.

- Sun Tzu

Automated Bandwidth Testing (ABT)

Here we describe in detail the scripts and programs involved in ABT. But first, an overview of the
technology.

NUK jobs

Jobs allow for automated use of the utilities on the NUK. The included scripts submit jobs to test
throughput (sample job files included). The script then waits for the output from the job, and takes
action (e.g. sending an email) if necessary. This process can be repeated for different sites or different
networks and for different NUK’s.

Script logic

The logic for the scripts is as follows:

The master.sh script goes through all files in a directory and runs bandwidthcheck.sh passing each
file as an argument. This allows for one executable to test bandwidth to multiple sites in sequence.

The bandwidthcheck.sh script does the following:
Uploads the job file to the NUK specified in the ABTIP
Waits a set period of time for the job to finish
Downloads the output produced by the job
Compares a value in the job output to a value specified in the job file
If the value is less than the specified amount, then a third script is run (the script name is specified

in the job file).

The error.sh script performs the action designated when bandwidth is too low. In the supplied script it
sends an email to address specified in the ABTEMAIL variable containing debugging output from the
job and the output generated by the NUK using the Unix mail command.

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 4

How jobs work

Job are launched on the NUK by uploading text files to a NUK via FTP or SFTP. The file is uploaded
to /storage/job/intake (or /config/storage/job/intake if using SFTP). The specified utility is then run on
the NUK and the output from this utility is stored on the NUK where it can be retrieved via FTP or
HTTP.

Note: any extension is stripped from the job file and the output from the job is stored in jobfilename.out
in the /storage/job/output/ directory (accessible via FTP).

The format of the job file is as follows

Job file format

The text file (or job file) consists of multiple lines of the form “X=Y”. The lines define which utility is to
be run, and what arguments should be passed to the utility. A sample job file is included below:

SCRIPT=srv-nett2.sh
PROG='iperfclient'
IPADDR='192.168.10.193' # IP address of remote NUK
IPADDRVAR='iperfclient_ipaddr'
UOPTIONS='-w 800k -i .5 -O 1 -t 3 -J' # Options to pass to iperf3

There are many more possible options, but the above file will launch iperf3 in client mode and tell it to
connect to 192.168.10.193 with the following options '-w 800k -i .5 -O 1 -t 3 -J'. From left to right these
options have the following meanings:

-w 800k Set the TCP Window to 800k //**//
-i .5 Report throughput every .5 seconds
-O 1 Omit the first second of testing from the total
-t 3 Test for 3 seconds
-J Generate output in JSON format (required)

Additional lines of the form A=B can be added as long as these variables are not used internally by
the NUK. We will add these lines to the job file so that a single file contains instructions both for the
NUK and for the included scripts. To avoid name collisions, we will prepend ABT to each variable
name.

A full sample job file is included below:

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 5

SCRIPT=srv-nett2.sh
PROG='iperfclient'
IPADDR='192.168.10.193'
IPADDRVAR='iperfclient_ipaddr'
UOPTIONS='-w 800k -i .5 -O 1 -t 3 -J'
ABTIPADDR=192.168.10.203
ABTUSER=root # Username for upload. Usually root

ABTPASSWORD=password # Password for the above username

ABTFIELD=13 # Field to numerically test against.

13 = received bandwidth, 11 = sent bandwidth
ABTLESSTHAN=1 # Bandwidth below which an action is taken (Mbit)

ABTSCRIPT=./error.sh # Script to run if field 13 is less than expected

An absolute path would probably be a good idea
ABTEMAIL="jmitchel@localhost" # error.sh sends email to the following address

Diagrams
We know that some of you are visual learners, so here are diagrams showing the networking actions
taken by the supplied scripts. In each diagram the step mentioned is shown in red.

Step 1 – The job file is uploaded to the NUK

mailto:jmitchel@localhost

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 6

Step 2 – The iperf3 bandwidth test is performed

Step 3 – The results of the iperf3 test are retrieved

Conclusion

With the NUK and the supplied scripts, IT staff can get advance warning of problems before they
impact users. This can improve productivity – especially at remote offices where problems may
remain undetected until users arrive for work.

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 7

Appendix A

Here are the scripts described above. They are also on our website at: https://www.bigjar.com/abt-
finalv2.tar.gz

master.sh

master.sh goes through every file in the directory specified by the ABTSITES variable (or in the first argument
passed to master.sh) and launches bandwidthcheck.sh to process it.

#!/bin/sh
#
#
Arguments
1: Directory to go through and send jobs to NUK
#

BANDWIDTHCHECK=./bandwidthcheck.sh
DIRECTORY=$1

#
#
Load needed functions
. ./system.conf

DIRECTORY=$1
if ["$DIRECTORY" = ""]; then
DIRECTORY=$ABTSITES

fi

for FILE in `ls -d -1 $DIRECTORY/** | grep -v \~`
do
sh $BANDWIDTHCHECK $FILE
RESULT=$?
debugvar RESULT
debugvar FILE

done

https://www.bigjar.com/abt-finalv2.tar.gz
https://www.bigjar.com/abt-finalv2.tar.gz

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 8

bandwidthcheck.sh

bandwidthcheck.sh starts the job on the NUK that tests bandwidth between the two NUK’s. It launches the
script specified by the ABTSCRIPT variable.

#!/bin/sh
#
arguments are:
#
1: IP Address or DNS name of NUK to upload the file to
2: Password of NUK
3: filename
4: field#
5: value to check against. If less than
6: Action Script to run if bandwidth is less
#
Error codes:
1: the upload of the job file to the NUK fails
#
Script Logic:
#
0.5) Create filename with random hex digits added
1) Upload job file to IP address of NUK
2) Wait for job file to finish
3) Download output from job
4) Run output through python script sending output to a variable
5) Parse resulting CSV output
6) If value is less than the value passed to this script, then the action
script is run with the job file as the only argument
#
#
The script returns the following values
0: Success
1: Error returned by curl
2: Error returned by wget
4: Bandwidth is lower than threshold
5: Bandwidth can't be derived from output from iperf3 output
#
Function(s)
#
callactionscript () {

Arguments passed to this function
1) Error String
2) filename of job
3) filename containing OUTPUT from commands run

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 9

debug "Error in ABT (Automated Bandwidth Testing). Running specified
script"
CASSTRING=$1
JOBFILE=$2
OUTPUTFILE=$3
ERRORSTRING="$CASSTRING Running $ACTIONSCRIPT"
debug " sh $ACTIONSCRIPT "$ERRORSTRING" $JOBFILE $OUTPUTFILE"
debug "`sh $ACTIONSCRIPT "$ERRORSTRING" $JOBFILE $OUTPUTFILE`"
RESULT=$?
if [$RESULT != "0"]; then

debug "Error running $ACTIONSCRIPT"
fi

}

Step 0: Initialization
#
Set location of executables
#
#CURL="/usr/pkg/bin/curl"
DATE="/bin/date"

. ./system.conf # Load
needed functions into memory

NUMARGS=$#
ARGTEST=`expr $NUMARGS \>\= 6`
RESULT=$?
debugvar RESULT

Text output from ARGTEST is 0 if NOT true, and 1 if TRUE
For some perverse reason (probably historial/hysterical) The error codes
returned are the reverse :(
#
expr only works for integers!!!!!!!!!!!!!!!!!!
#
if ["$ARGTEST" = "1"]; then
IPADDR=$1
PASSWORD=$2
FILENAME=$3
FIELD=$4
LESSTHAN=$5
ACTIONSCRIPT=$5
USER=root

else
FILENAME=$1
. $FILENAME
IPADDR=$ABTIPADDR
USER=$ABTUSER
PASSWORD=$ABTPASSWORD

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 10

FIELD=$ABTFIELD
LESSTHAN=$ABTLESSTHAN
ACTIONSCRIPT=$ABTSCRIPT

fi

#CURL=/usr/pkg/bin/curl

RANDHEX=`randhex`

if [-e $FILENAME]; then
SHORTJOBFILENAME=`stripdir $FILENAME`
JOBFILENAME=$SHORTJOBFILENAME-$RANDHEX
cp $FILENAME $ABTOUTPUT/$JOBFILENAME
debugvar JOBFILENAME
debugvar SHORTJOBFILENAME

fi
#
Step 0.5: Set up Temporary file to receive output. This will only be used
in case of low bandwidth or an error
#

TEMPFILE=$ABTOUTPUT/bwcheck.$RANDHEX
DEBUGFILE=$TEMPFILE

echo "" > $DEBUGFILE

debugvar SHORTJOBFILENAME
debugvar JOBFILENAME
debugvar FILENAME
debugvar IPADDR
debugvar USER
debugvar PASSWORD
debugvar FIELD
debugvar LESSTHAN
debugvar ACTIONSCRIPT

Step 1: Upload job file to NUK

URL="ftp://$IPADDR/storage/job/intake"

if ["$ABTUSER" = ""]; then
ABTUSER=root

fi

debug "$CURL -s --user $ABTUSER:$PASSWORD --upload-file
$ABTOUTPUT/$JOBFILENAME $URL/$JOBFILENAME"
debug `$CURL -s --user $ABTUSER:$PASSWORD --upload-file
$ABTOUTPUT/$JOBFILENAME $URL/$JOBFILENAME`

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 11

RESULT=$?
if ["$RESULT" != "0"]; then
callactionscript "Error uploading job file!" $FILENAME $TEMPFILE
exit 1

fi

Step 2: Wait for job to finish and print countdown if DEBUG is set

if ["$DEBUG" != ""]; then
echo "Sleeeping for 10 seconds"
sleep 10

else
sleep 10 >/dev/null

fi

Step 3: Download Output from Job file
#
#
Save starting directory so we can go back

SAVEPWD=$PWD
cd $ABTOUTPUT
$WGET --user=root --password=$PASSWORD -nv
ftp://$IPADDR/storage/job/output/$JOBFILENAME.out 2>> $TEMPFILE
#debugvar WGETOUTPUT
RESULT=$?
cd $SAVEPWD
if ["$RESULT" = "1"]; then
callactionscript "Error returned by wget!" $JOBFILENAME $TEMPFILE
exit 2

fi

JSONFILENAME=$ABTOUTPUT/$JOBFILENAME.out
debugvar JSONFILENAME

CSV=`cat $JSONFILENAME | $PYTHON iperf3tocsv.py`
debugvar CSV
echo $CSV | grep "Error"
RESULT=$?
if [$RESULT = "0"]; then
callactionscript "Error received from iperf3tocsv.py!" $JOBFILENAME

$TEMPFILE
exit 4

else
VALUE=`echo $CSV | cut -f $FIELD -d","`

debugvar VALUE
debugvar LESSTHAN

MEGAVALUE=`echo $VALUE * 1000000 | bc`

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 12

MEGALESSTHAN=`echo $LESSTHAN * 1000000 | bc`
debugvar MEGAVALUE
debugvar MEGALESSTHAN

if ["$VALUE" != ""]; then
debug "echo $VALUE \< $LESSTHAN | bc "
RESULT=`echo $VALUE \< $LESSTHAN | bc `
debugvar RESULT
if ["$RESULT" = "1"]; then

callactionscript "Bandwidth is lower than threshold given."
$JOBFILENAME $TEMPFILE

exit 4
else

debug "Bandwidth tested is greater than value given"
fi

else
callactionscript "Error: No value returned from numerical

comparison. iperf3 not set to output in JSON format?" $JOBFILENAME
$TEMPFILE

exit 5
fi

fi

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 13

error.sh

The error.sh script sends an email to the user specified by the ABTEMAIL variable in the site file
supplied to bandwidthcheck.sh:

#!/bin/sh
#
#
#
Arguments passed to this script
#
1) Error string
2) Job file
3) iPerf output file (output from commands goes here)
#
Load needed functions
. ./system.conf

DEBUG=ON

TEMPFILE=`randfile $TEMPDIR/error`
TEMPSTRING=$1
STRING="$TEMPSTRING Target IP is $UOPTIONS"
TEMPFILENAME=$2
OUTPUTFILE=$3
RANDHEX=`echo $TEMPFILE | cut -f 2 -d "-"`

SHORTFILENAME=`stripdir $TEMPFILENAME`
FILENAME=$ABTOUTPUT/$SHORTFILENAME
IPERFOUTPUT=$ABTOUTPUT/$SHORTFILENAME.out

debugvar STRING
debugvar FILENAME
debugvar OUTPUTFILE
debugvar IPERFOUTPUT

. $FILENAME

echo "$STRING" > $TEMPFILE
echo >> $TEMPFILE
echo "*******************Job file included below*******************" >>
$TEMPFILE
echo >> $TEMPFILE
if [-f $FILENAME]; then
cat $FILENAME >> $TEMPFILE

else
debug "File: "$FILENAME" Does not exist"

fi

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 14

echo >> $TEMPFILE
echo "************************End Job File*************************" >>
$TEMPFILE
echo >> $TEMPFILE
echo "*******************Debugging Output included
below*******************" >> $TEMPFILE
echo >> $TEMPFILE

if [-f $OUTPUTFILE]; then
cat $OUTPUTFILE >> $TEMPFILE

else
debug "File: "$OUTPUTFILE" Does not exist"

fi

echo >> $TEMPFILE
echo "************************End
Debugging********************************" >> $TEMPFILE
echo >> $TEMPFILE
echo >> $TEMPFILE
echo "*******************iperf3 output included below*******************"
>> $TEMPFILE
echo >> $TEMPFILE

if [-f $IPERFOUTPUT]; then
cat $IPERFOUTPUT >> $TEMPFILE

else
debug "File: "$IPERFOUTPUT" Does not exist"

fi

echo >> $TEMPFILE
echo "************************End iperf3 output*************************"
>> $TEMPFILE
echo >> $TEMPFILE
echo >> $TEMPFILE

if [-f $TEMPFILE]; then
debug "Time to make the biscuits. (Sending email)"

debugvar TEMPFILE
debugvar TEMPFILE

cat $TEMPFILE
cat $TEMPFILE | mail -s "$STRING" $ABTEMAIL
RESULT=$?
debug "Here's the Error Code from sending mail: $RESULT"

else
debug "Temporary File does not exist!!!!!!!!! The filename is: $TEMPFILE"

fi

#showvar STRING

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 15

#showvar FILENAME
#showvar OUTPUTFILE

exit 0

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 16

system.conf

system.conf contains some global variables that will apply across all tested sites as well as some functions

These are the variables that need to be changed

TEMPDIR="/tmp"
DEBUGFILE=./debug.txt
ABTSITES=/home/jmitchel/abt/sites
CURL="/usr/bin/curl"
WGET=/usr/bin/wget
BANDWIDTHCHECK=/home/jmitchel/abt/bandwidthcheck.sh
PYTHON=/usr/bin/python3.7
#
WARNING! The ABTOUTPUT variable must contain an absolute path!!!!!!!!
#
ABTOUTPUT="/home/jmitchel/abt/output"

Changing things below this line could cause serious problems!!!!!!!!!

echoerr() { printf "%s\n" "$*" 1>&2;}
echoerr2() { echo "$*" 1>&2; }

sanfilename() { echo $* | sed s+/+_+g; }

gethash() { hmac256 "`grep HOSTNAME /config/nuk.conf`" $*; }

stripdir() {
echo $1 | rev | cut -d'/' -f 1 | rev

}

sanarg () { bash /script/sanitizearg $1; }

Display contents of variable $1 is the variable name (no $!)
showvar () {
NAMEOFVAR=$1
eval VALUEOFVAR=\$$NAMEOFVAR
printf '%s=' "$NAMEOFVAR" 1>&2
printf "\'" 1>&2
echoerr $VALUEOFVAR\'
unset NAMEOFVAR
unset NAMEOFVAR2

}

#dialogvar () {
sanarg $1

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 17

logmessage file "message to be logged"
logmessage () {
NUMARG=$#
SYSFILE=$1
i=1
LMMESSAGE=""

while [$i -lt $NUMARG]
do

j=$(($i+1))
eval LMARG=\$$j
TMPLMMESSAGE="$LMMESSAGE $LMARG"
LMMESSAGE=$TMPLMMESSAGE
i=$(($i+1))

done
showvar SYSFILE
showvar LMMESSAGE
echoerr $LMMESSAGE
echo $LMMESSAGE >> $SYSFILE

}

#logvar <file to log to> <variable to output>
logvar outputs VARIABLE=$VARIABLE to the file specified
logvar () {
LOGSYSFILE=$1
LMVAR=$2
showvar $LMVAR 2>> $LOGSYSFILE

}

Remove $1 from $2
stripname () {
TOBEREMOVED=$1
REMOVEFROM=$2
echo $REMOVEFROM | sed s+$TOBEREMOVED++

}

#debug "String to debug" - output goes to $DEBUGFILE
debug () {
echoerr "Arguments to debug are $*"
showvar DEBUG
if [! "$DEBUG" = ""]; then

showvar DEBUG
logmessage $DEBUGFILE "$*"

echoerr "Done with Logmessage"
if ["$DEBUGSLEEP" = ""]; then

DEBUGSLEEP=0.4
showvar DEBUGSLEEP

fi
if [$DEBUGSLEEP = 0]; then

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 18

printf '%s' "No sleep till Brooklyn! "
intsleep 0

else
DEBUGSTRING="Sleeping for $DEBUGSLEEP seconds"
DEBUGCHAR=${#DEBUGSTRING}

showvar DEBUGCHAR
i=1
#printf --
printf '%s %s %s' $DEBUGSTRING 1>&2
sleep $DEBUGSLEEP >/dev/null 2>/dev/null

DC=$(($DEBUGCHAR*2))
DC=$(($DEBUGCHAR+1))

showvar DC
while [$i -lt $DC]
do

printf '\b \b' 1>&2
i=$(($i+1))

done
printf '\b' 1>&2

fi
fi

}

debugvar () {
#$1 = VARIABLE Name and value to write to debug file
DVVAR=$1
DVTEXT=`showvar $DVVAR 2>&1`

showvar DVTEXT
if ! ["$DEBUG" = ""]; then
showvar DVVAR
showvar DVTEXT
debug "Debugvar is running"

debug "$DVTEXT"
fi
unset DVVAR
unset DVTEXT

}

debugvar2 () {
if [! $DEBUG = ""]; then

#$1 = VARIABLE whose value were outputing
DV2=$1
showvar $DV2
logvar $DEBUGFILE $DV2
sleep $DEBUGSLEEP
unset DV2

fi
}

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 19

getsavedvar () {
 GSVVAR=$1
 GSVCONFIGVAR=$2
 VALUE=\$$GSVVAR
 if [$VALUE == ""]; then
 eval $GSVVAR="$2"
 debugvar GSVVAR
 debugvar VALUE
 debugvar GSVCONFIGVAR
 fi
}

delayeddelete () {
DDFILE=$1
DDDELAY=$2
if ["$DDDELAY" = "0"]; then

DDDELAY=60
fi
if ["$DDDELAY" = ""]; then

DDDELAY=60
fi
/script/delaydel.sh $DDFILE $DDDELAY &

}

sethn () {
HOSTNAME=`/bin/hostname`
if ["$HOSTNAME" = ""]; then

HOSTNAME="NoName"
fi
hostname $HOSTNAME
export HOSTNAME

}

randhex () { openssl rand -hex 6; }

randfile () {
RANDFILE=$1
RANDRANDOM=`randhex`
echo $RANDFILE.$RANDRANDOM

}

intsleep () {
TIME=$1
sh /script/looppressq.sh $TIME

}

countdown() {
TIMESLEEP=$1
msg="Sleeping for ... "

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 20

 echo -n "$msg"
 for I in `seq $TIMESLEEP 1`
 do
 printf "$I"
 sleep 1

ILENGTH=`echo $I | wc -c`
for J in `seq $ILENGTH 2`
do

printf "\b \b"
done

 done
printf "\b done!\n"

}

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 21

iperf3tocsv.py

iperf3tocsv.py was written and is copyrighted by Kirth Gersen (https://nspeed.app/) and is available at
https://github.com/kgersen/iperf3protect/tree/master. It takes the JSON output from iperf3 and converts it to
CSV format which can then be parsed by bandwidthcheck.sh. Unlike the other scripts, it is written in python.

This script is licensed under the MIT license: (from:
https://github.com/kgersen/iperf3protect/blob/master/LICENSE.md) :

#!/usr/bin/env python

"""
 Version: 1.1

 Author: Kirth Gersen
 Date created: 6/5/2016
 Date modified: 9/12/2016
 Python Version: 2.7

"""

from __future__ import print_function
import json
import sys
import csv

db = {}

def eprint(*args, **kwargs):
 print(*args, file=sys.stderr, **kwargs)

def main():
 global db
 """main program"""

 csv.register_dialect('iperf3log', delimiter=',',
quoting=csv.QUOTE_MINIMAL)

https://github.com/kgersen/iperf3protect/tree/master
https://nspeed.app/

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 22

 csvwriter = csv.writer(sys.stdout, 'iperf3log')

 if len(sys.argv) == 2:
 if (sys.argv[1] != "-h"):
 sys.exit("unknown option")
 else:
 csvwriter.writerow(["date", "ip", "localport", "remoteport",
"duration", "protocol", "num_streams", "cookie", "sent", "sent_mbps",
"rcvd", "rcvd_mbps", "totalsent", "totalreceived"])
 sys.exit(0)

 # accummulate volume per ip in a dict
 db = {}

 # highly specific json parser
 # assumes top { } pair are in single line

 jsonstr = ""
 i = 0
 m = False
 for line in sys.stdin:
 i += 1
 if line == "{\n":
 jsonstr = "{"
 #print("found open line %d",i)
 m = True
 elif line == "}\n":
 jsonstr += "}"
 #print("found close line %d",i)
 if m:
 process(jsonstr,csvwriter)
 m = False
 jsonstr = ""
 else:
 if m:
 jsonstr += line
 #else:
 #print("bogus at line %d = %s",i,line)

def process(js,csvwriter):
 global db
 #print(js)
 try:
 obj = json.loads(js)
 except:
 eprint("bad json")
 pass
 return False
 try:

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 23

 # caveat: assumes multiple streams are all from same IP so we take
the 1st one
 # todo: handle errors and missing elements
 ip = (obj["start"]["connected"][0]["remote_host"]).encode('ascii',
'ignore')
 local_port = obj["start"]["connected"][0]["local_port"]
 remote_port = obj["start"]["connected"][0]["remote_port"]

 sent = obj["end"]["sum_sent"]["bytes"]
 rcvd = obj["end"]["sum_received"]["bytes"]
 sent_speed = obj["end"]["sum_sent"]["bits_per_second"] / 1000 /
1000
 rcvd_speed = obj["end"]["sum_received"]["bits_per_second"] / 1000 /
1000

 reverse = obj["start"]["test_start"]["reverse"]
 time = (obj["start"]["timestamp"]["time"]).encode('ascii',
'ignore')
 cookie = (obj["start"]["cookie"]).encode('ascii', 'ignore')
 protocol = (obj["start"]["test_start"]["protocol"]).encode('ascii',
'ignore')
 duration = obj["start"]["test_start"]["duration"]
 num_streams = obj["start"]["test_start"]["num_streams"]
 if reverse not in [0, 1]:
 sys.exit("unknown reverse")

 s = 0
 r = 0
 if ip in db:
 (s, r) = db[ip]

 if reverse == 0:
 r += rcvd
 sent = 0
 sent_speed = 0
 else:
 s += sent
 rcvd = 0
 rcvd_speed = 0

 db[ip] = (s, r)

 csvwriter.writerow([time, ip, local_port, remote_port, duration,
protocol, num_streams, cookie, sent, sent_speed, rcvd, rcvd_speed, s, r])
 return True
 except:
 eprint("error or bogus test:", sys.exc_info()[0])
 pass

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 24

 return False

def dumpdb(database):
 """ dump db to text """
 for i in database:
 (s, r) = database[i]
 print("%s, %d , %d " % (i, s, r))

if __name__ == '__main__':
 main()

Bigjar Systems, LLC White Paper—Discover Latent Network Problems with Automated Bandwidth Testing - Page 25

Discovering Latent Network Problems
with Automated Bandwidth Testing
July 2024
Author: Jason C. Mitchell

Bigjar Systems, LLC
5305 Village Center Drive
Columbia, MD U.S.A.

Phone: +1.855-4BIGJAR
+1-855 424-4527

Copyright © 2024, Bigjar Systems, LLC and/or its affiliates. All rights reserved.

This document is provided for information purposes only and the contents hereof are subject to change without notice. This
document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or
implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We
specifically disclaim any liability with respect to this document and no contractual obligations are formed either directly or
indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without our prior written permission.

	Executive Overview
	Introduction

	Automated Bandwidth Testing (ABT)
	NUK jobs
	Script logic
	How jobs work
	Job file format

	Diagrams
	Step 1 – The job file is uploaded to the NUK
	Step 2 – The iperf3 bandwidth test is performed
	Step 3 – The results of the iperf3 test are retrieved

	Conclusion
	Appendix A

